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ABSTRACT: Forensic entomological evidence is most often used 
to estimate the postmortem interval (PMI). Satisfactory techniques 
have not been available to quantify the precision of such a PMI 
estimate. For Cochliomyia macellaria (F.) (Diptera: Calliphoridae), 
we describe construction of a confidence interval on age of a larva, 
given its weight. The method requires a controlled experiment by 
which weights of larvae are observed at ages spread over sufficient 
range to cover the time from egg hatch up to postfeeding stage. A 
statistical model relating distributions of weights to age is formu- 
lated and fit to these data. We assumed a simple model in which both 
means and variances of weight distributions are linearly interpolated 
between sampled ages. The weight of a larva of unknown age is 
then compared to the fitted model via inverse prediction to compute 
the confidence interval on age of the larva. 

KEYWORDS: forensic science, forensic entomology, Cochliomyia 
macellaria, Calliphoridae, prediction statistics, postmortem inter- 
val, maggot growth rate 

The use of insects to investigate cases of wrongful death has 
increased dramatically in recent years [1]. The chief contribution 
of the forensic entomologist is in the estimation of the postmortem 
interval (PMI), although other inferences may be made [2]. 

Two general lines of entomological evidence are used in PMI 
determination [3]. In the first, the age of specimens collected from 
a victim may be estimated to provide a minimum time period since 
death. Most developmental data have been obtained for the Diptera 
(true flies), particularly blow flies or Calliphoridae [4]. This 
approach requires detailed knowledge of the fly species used and 
the conditions at the crime scene, but is relatively conservative if 
one assumes no knowledge of the interval between human death 
and the deposition of insect eggs or larvae. 

The second approach takes advantage of the succession of arthro- 
pod species commonly observed on a wide variety of carrion [5]. 
Unlike the previous technique, successional analysis may be used 
to estimate both a minimum and maximum PMI [6]. The succession 
of arthropods within a body, however, is a more complicated 
phenomenon than larval development [7,8]. Investigators who use 
succession (as opposed to development) data must deal with larger 
number of complicating factors and, presumably, a larger number 
of sources of uncertainty. 

Substantial scientific progress has been made for both 
approaches in recent years. Carrion succession is a classical subject 
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in ecology [9-11], and recent studies have stressed observations 
applicable to criminal investigations [12,13]. 

Development data have also been gathered for a large number 
of carrion species [4,14-17]. 

As forensic entomology has matured, investigators have also 
considered the effects of complicating factors such as freezing and 
thawing of the body [18], drugs in a victim's tissues [19], and 
the elevated temperature produced by a maggot mass [4,17,20]. 
Mathematical and computer models have been developed in an 
effort to bring greater accuracy to PMI estimates [21], and to aid 
in the management of large data sets [6]. 

Little has been done, however, to deal objectively with the 
variation in entomological data applied to forensic cases. Specifi- 
cally, no statistical techniques have been employed to express the 
uncertainty associated with any PMI estimate. Such methods are 
essential for establishing the precision of the estimate, and for 
evaluating any conflict of  opinion among experts (that is, different 
PMI estimates may not be, in fact, significantly different). In 
this study, we develop and illustrate construction of a confidence 
interval on the age of a fly of  known weight but unknown age. 

Materials and Methods 

Cochliomyia macellaria (F.) larvae were coUected from carrion 
near Baton Rouge, LA. The resulting adults were allowed to emerge 
in a cage and were supplied with H20, granulated sucrose and 
ground beef. Eggs from these adults were obtained over a nine- 
day period. 

Eleven 250 mL plastic containers were assigned to ages 0.5 d, 
0.75 d, 1.0 d, 1.25 d, 1.5 d, 1.75 d, 2.0 d, 2.5 d, 3.0 d, 3.5 d, and 
4.0 d, respectively. The order in which they were to receive their 
egg samples was randomized. Each container was prepared with 
180 g of refrigerated (4~ ground beef an hour before it received 
eggs. The container was then kept at room temperature until the 
eggs were deposited. 

Eggs were collected during a one-hour period so that they would 
be the same age. When an adult in the cage was observed to 
deposit a clump of eggs, the clump of eggs and a small amount 
of the surrounding ground beef were transferred to one of the 250 
mL plastic containers. The parallel arrangement and size of  each 
clump indicated, albeit not with complete certainty, that all its 
eggs came from one mother. The container was then sealed with 
a paper towel and placed in an incubator (Quincy Lab Inc., Model 
10-100, Chicago) at 28~ After an elapsed time corresponding to 
the age designated for the container, all the larvae in the container 
were preserved in Kahle's solution [22]. The instar (stage of devel- 
opment) of each preserved larva was determined according to the 
number of  spiracular slits [2]. All  larvae from the container were 
dried together for 48 h at 50~ in an oven (Dispatch Oven Co., 
Model 288-A, Minneapolis). The dried larvae were weighed on a 
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balance (Metier, Type B5, Zurich) that provided weights as small 
as 0.0001 g. 

Preliminary observations indicated that hatching and larval molts 
occur within two days after eggs are laid, so we designated sample 
ages every six hours from 0.5 d to 2.0 d. Beyond 2.0 d, we chose 
sample ages 12 h apart. Postfeeding larvae wander from the food 
and decrease in size [4]. Preliminary observations indicated that 
larvae at 4.0 d are near but not at this stage, so we chose 4.0 d 
as the maximum sampled age. 

The 0.5 d sample contained no useable larvae; egg hatch 
occurred between 0.5 d and 0.75 d. The larvae obtained at ages 
up to 1.25 d were so small that they had to be weighed in sets of 
several larvae each. At 0.75 d, these sets had 25 larvae each, while 
at 1.0 d and 1.25 d they had 10 larvae each. 

After considerable scrutiny of the weights of the larvae obtained 
at these ten sampled weights, and about a year after these larvae 
had been obtained, we sampled 84 larvae at an age of 2.3 d using 
the same procedure. The eggs from which these larvae came were 
observed to come from one mother. We chose 2.3 d because it 
appeared that that age would test most severely the assumptions and 
approximations that we had devised to analyze the correspondence 
between age and weights. 

Results and Discussion 

The data consist of 907 dry weights of larvae at specific ages. 
Twenty of these are weights of sets of twenty-five or ten larvae 
each. Although combining weights of different numbers of larvae 
requires some technical details, it is straightforward. We shall 
describe these details shortly. Our purpose at this point is to describe 
our objective and how we have tried to attain it. 

Table 1 shows the composition of the larvae by instar at each 
age. With the exceptions of 1.50 d and 2.00 d, larvae at each age 
are all the same instar. Those at 1.50 d include 1% of instar I, and 
those at 2.00 d include 8% of instar II. Although mixtures of 
instars at these ages may affect the average and dispersion of 
weights, the percentages of the minority instars are so small that 
it appears that their effects are negligible. 

Table 2 summarizes the weight data. As an example to explain 
the entries in each row, consider the row for larvae 1.00 d old. 
There were ni = 80 larvae weighed in eight sets of ten larvae per 
set. The average of these eight weights is 10 • 0.055 mg, so the 
average dry weight per larva is 0.055 mg. The sample variance 
of the weights of the eight sets of larvae is 10 • 0.000,857 mg 2. 

TABLE 1--Proportion of larvae in each developmental stage by age. 

Larval Instar 

Age (d) egg I II HI n 

0.50 1.00 nc 
0.75 1.00 50 
1.00 1.00 856 
1.25 1.00 102 a 
1.50 0.01 0.99 90 
1.75 1.00 48 
2.00 0.08 0.92 91 
2.50 1.00 147 
3.00 1.00 202 
3.50 1.00 151 
4.00 1.00 158 

aSome larvae at these ages (5 and 2, respectively) were not weighed 
because n was not divisible by 10. 

TABLE 2---Summary of the data. 

Avg. weight 
Age per larva Larvae/ 

(days) (mg) set Sets dfi ni s 2 per larva Pooled df 

0.75 0.020 25 2 1 50 0.000,800 0.001,435 17 
1.00 0.055 10 8 7 80 0.000,857 0.001,435 17 
1.25 0.062 10 10 9 100 0.001,956 0.001,435 17 
1.50 0.224 1 90 89 90 0.010,407 0.010,407 89 
1.75 0.521 1 48 47 48 0.017,429 0.017,429 47 
2.00 2.558 1 91 90 91 1.269,12 1.269,12 90 
2.50 3.397 1 147 146 147 0.721,635 0.721,635 146 
3.00 19.420 1 202 201 202 10.977,2 10.977,2 201 
3.50 19.524 1 151 150 151 7.292,548 7.292,48 150 
4.00 20.782 l 158 157 158 9.838,99 9.838,99 157 

Since each set weight is a total of ten individual weights, the 
sample variance of the eight set weights estimates ten times the 
variance of an individual weight. Thus the corresponding estimate 
of the variance of an individual weight is 0.000,857 mg 2. However, 
because it is proportional to a sample variance of eight weights, 
it has 8 - 1 = 7 degrees of freedom. The additional details required 
for weights of sets of larvae are not required for ages greater than 
1.25 d, where individual weights are recorded. 

Sample variances differ considerably with age. For the least 
three ages, though, we chose to pool the three sample variances 
in order to attain greater combined degrees of freedom and because 
the three sample variances were not greatly different. 

Figure 1 depicts the data. Average weight increases steadily 
with age, but not in a smooth, sigmoid shape usually associated 
with growth curves. Variation among weights differs greatly with 
age, but it is fairly stable within four ranges of age: .75-1.25 d, 
1.50-1.75 d, 2.00-2.50 d, and 3.00-4.00 d. For ages 3.00--4.00 d, 
variation is increased greatly by a few very small larvae and a 
few atypically large larvae. 

Constructing a Confidence Interval on Age 

Our objective is to describe how the weight of a single Cochlio- 
myia macellaria larva can be used to establish its age, and to 

0 . 0 0  ~ I 
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FIG. 1--Distributions of  dry weights by age. Weights of  sets are 
indicated by + for ages up to 1.75 days. Histograms of weights are 
shown for ages 2.00 days and greater. The solid line connects average 
weights at each sampled age. 
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describe the precision of the result. The procedure we shall use 
is straightforward in concept, although it is a little busy in its 
details. Using the data in Table 2, for each value of age between 
0.75 d and 4.0 d we shall construct a range of  values within which 
it is reasonable to think the weight of  a randomly sampled larva 
of that age might fall. Such a range is called a prediction interval. 
Thus for each age we will construct a prediction interval on the 
weight of a larva. Then, given the weight of a larva, we shall find 
all values of age for which that weight fails in the corresponding 
prediction interval. For each such age, the given weight would not 
be particularly rare among larvae of that age. In formal terms, the 
list of all such ages comprises a confidence set on age for-the 
given weight (as shown in [23], p. 79). This set is typically, but 
not always, an interval of values of age. 

Figure 2 illustrates how this confidence interval (or confidence 
set, if it is not an interval) is constructed. Imagine drawing a 
vertical line through a given age, say 2.5 d. That line intersects 
the two light lines at the extremes of a 95% prediction interval 
on the dry weight of a larva 2.5 d old. The light lines connect 
these prediction bounds computed for all ages between .75 d and 
4.00 d. Given the weight of a larva (0.009 g is illustrated in Fig. 
2), find all ages for which the weight lies within the prediction 
bounds. That set of ages forms an approximate 95% confidence 
set on the age of the larva. In Fig. 2, that set is the range of ages 
from 2.580 d to 2.847 d. 

The basic procedure is to construct a prediction interval on 
weight at each age. Take age --- 2.00 d as an example. A 95% 
prediction interval on weight is 

Y • t.o25,df ~/t~ ~.oo( 1 + 1  ) 

where y is the observed average weight and ni is the number of 
larvae whose weights are averaged in Y. The population variance 
of weights of 2.00 d-old larvae is denoted by tr2.0o. We need an 
estimate of  this variance, which is indicated by the hat. Since we 
have a sample from this particular population (namely, larvae 2.00 
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FIG. 2--Construction of a confidence interval on age. Light lines 
connect approximate 95% prediction bounds for each age. Construc- 
tion of a confidence interval on age for a larva weighing 0.009 g 
is illustrated. 

d old), we can estimate the population variance with the sample 
variance, which is S20o = 1.269,12 mg 2. It has 90 degrees of free- 
dom. The critical value t.025df = t.o25.90 = 1.987 is the upper 2.5 
percentile of Student's t distribution with 90 degrees of  freedom. 
Putting these together, the interval is 

= 2.558 __+ 2.251 

= 0.307 mg to 4.809 mg. 

Prediction intervals on weight at other ages for which there are 
observations can be constructed similarly. 

In order to construct prediction intervals on weight at ages that 
were not sampled, we must assume some relation between the 
variance of weight and age. Although other more complicated 
models are possible, we shall assume that both mean weight and 
the variance of weight are linear with age between the sampled 
ages. That is, we shall linearly interpolate both means and variances 
of weight with respect to age. For the means, this corresponds to 
connecting the means with straight lines, as illustrated in Fig. 1. 

The next four paragraphs describe the construction of prediction 
intervals on weight at each age in the range from 0.75 d to 4.00 
d. The procedure will be illustrated in terms of constructing a 
prediction interval on weight of a 2.75 d-old larva. Three funda- 
mental ingredients are required to construct a prediction interval: 
an estimator of  the population mean weight of  2.75 d-old larvae; 
an estimate of  the variance of  this estimator; and an estimate of 
the population variance of weights of 2.75 d-old larvae. 

With the assumed model relating weights to age, we can estimate 
the population mean weight at ages that were not directly observed. 
For example, at age 2.75 d, the estimate of the population mean 
weight obtained by linear interpolation is 13,2.75 = .5 • 3.397 + 
.5 • 19.420 = 11.41 mg. This estimator is a linear combination 
of two sample means, the average weights for the 2.5 d-old larvae 
and the 3.00 d-old larvae. Therefore its variance can be expressed 
in terms of the two population variances, and hence its variance 
can be estimated in terms of the two sample variances as 

Var(~2.75)  = ( .5)  2 x ~ . 5 o  + ( .5)  2 X O a ~ 1 7 6  ~ 
147 202 

= (.5) z X 0.721,63___~5+ (.5) 2 X 10.977_.____22 
147 202 

= 0.01481. 

To construct a prediction interval on weight of  2.75 d-old larvae 
requires an estimate of the variance of weights of 2.75 d-old larvae. 
We have no data on 2.75 d-old larvae, and we are not willing to 
assume that the variance of  weights of 2.75 d-old larvae is the 
same as the variance of weights of  2.50 d-old larvae or of 3.00 
d-old larvae. A reasonable approximation is to linearly interpolate 
variances between data points. Assuming a linear interpolation 
model for the variances of  weights, for 2.75 d-old larvae we would 
estimate the population variance of weight to be .5 X 0.721,635 
+ .5 x 10.9772 = 5.84942 mg 2. 

By linearly interpolating population mean weights between 
observed ages and by linearly interpolating variances of  weights 
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between ages we have the ingredients required for a prediction 
interval. The prediction interval has the form 

~2.75 --I- t.025,dfJr~rar(~2.75) -4- 1~2.75 = 11.41 

- t.025,afx/0.014,81 + 5.849,42. 

The one remaining question is how to determine degrees of 
freedom for the critical value t.o:5,af. It may be seen that the quantity 
inside the square root is a positive linear combination of sample 

5. 2 2 5- 2 
mean squares, namely(.5 + 147)s2.5o+ (.5 + 202)s3.0o. Satterth- 

waite [24] described an approximation to degrees of freedom for 
this situation, and we have used that approximation here. For a 
linear combination cls~ + c2s22 of mean squares, Satterthwaite's 
approximation to df is 

(c~s{ + c2s~) 2 . 
af= (C1S2) 2 (C2S2) 2 

df l #2 

0.008 

0.006 

~ 0.004 

0.002 

0.000 
.75 ~oo z;o 2.;0 

Age (days) 

FIG. 3--The distribution of weights of 84 2.3-day-old C. macellaria 
larvae. The histogram of weights is outlined by the light line. The 
average weight of these 84 larvae is indicated by *. Solid lines connect 
average weights at each sampled age (not inclnding 2.3 days) and 
95% prediction bounds. 

This calculation yields df = 227.0 for age = 2.75 d, which gives 
a critical value of t.025.227 = 1.97. Putting all this together, the 95% 
prediction interval on weight of a larva 2.75 d old is the range 
from 6.64 mg to 16.18 mg. 

Although these calculations appear tedious, they are easy to 
program and compute for each specified value of age. Figure 2 
shows upper and lower bounds of 95% prediction intervals plotted 
against age. These bounds form an envelope around the lines that 
connect the observed average weights. With appropriate caveats for 
the assumptions and approximations that have gone into computing 
these bounds, we can derive an approximate confidence interval 
on the age of any larva for which we are given the weight. For 
example, for a larva that weighs 9 mg, the approximate 95% 
confidence interval on its age is the range from 2.580 d to 2.847 
d, a span of about 6.4 hours. 

Several approximations and assumptions are involved in the 
construction of the prediction bounds. In order to get some idea 
of the validity of this procedure, we sampled larvae at 2.3 d. We 
chose 2.3 d because it appeared to be an age at which the greatest 
departure from the linear interpolation model might occur. Follow- 
ing the same experimental procedure as described above, 84 larvae 
were obtained and weighed at this age; their average weight was 
3.12 mg, and the sample variances of their weights was 0.889 
mg 2. Figure 3 shows an enlargement of Figure 2 with a histogram 
of the additional weights for the 2.30 d-old larvae superimposed. 
The average weight of the 2.30 d-old larvae is very close to the 
linear interpolant. Of the 84 weights, all but one fell within the 
95% prediction interval on weight at 2.30 d. 

Discussion, Caveats and Limitations 

The limitations of any procedure to distinguish age of a larva 
from its weight are evident in Fig. 1. Just looking at the distributions 
of weights at different ages, it is clear that there is much overlap. 
It will be very difficult to distinguish among ages 0.75 to 1.25 d, 
between 1.50 d and 1.75 d, between 2.00 d and 2.50 d, and among 
3.00 tO 4.00 d. Within these ranges of ages, the confidence intervals 
we have described reflect this difficulty. They do not improve the 
situation, but they do quantify the lack of resolution. For example, 

for a larva weighing 0.0003 g, the 95% confidence interval based 
only on its weight (its instar would provide greater resolution here 
than its weight) is 1.38 d to 2.00 d, a span of about fifteen hours. 
Resolution is greatest for weights in the range from 0.005 g to 
0.013 g, corresponding to ages from 2.50 d to 3.00 d, where lengths 
of 95% confidence intervals on age are from four to eight hours. 

Interpretation of a confidence interval is straightforward. For 
example, the 95% confidence interval on the age of a larva that 
weighs 0.009 g is the range from 2.58 d to 2.85 d, as shown in 
Fig. 2. For a larva less than 2.58 d old, a weight as great as 0.009 
g would be very unlikely; for a larva greater than 2.85 d old, a 
weight as small as 0.009 g would be very unlikely. For ages within 
the interval, such a weight would not be particularly unlikely. 
Corresponding to the 95% level of confidence, what constitutes 
"very unlikely" is an event that occurs with probability less 
than 5%. 

In constructing the confidence intervals on age, it is assumed 
that the weight in question is the weight of  one larva that can be 
reasonably regarded as having been sampled at random from the 
population of larvae of  the same age and under the same conditions. 
Further, in order to be certain that the probabilistic properties of 
the confidence intervals hold it is necessary that the distribution 
of weights of larvae in the sampled population be normal. This 
condition is not verifiable in practice because many flies are likely 
to have deposited eggs on the victim, and the siblings of the 
sampled larvae cannot be identified (perhaps this could be done 
with DNA fingerprinting). However, the probabilities involved in 
the confidence intervals are good approximations if the distdbuton 
of weights of larvae of  a given age is reasonably mound-shaped. 
The data used here are reasonably mound-shaped, except for strag- 
glers like those noted in Fig. 1. The stragglers are numerous enough 
that they have two effects. First, they increase the sample variance, 
thus making the prediction intervals on weight wider than they 
would be if the stragglers were not present. Second, they indicate 
that in populations of larvae it is reasonable to expect such strag- 
glers with some probability, albeit rather small. These two effects 
compensate for one another to some extent in their effects on the 
validity of the confidence interval. 

We believe that the growth model presented here could be 
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directly applied to C. macellaria from a forensic scene in which 
the air temperature had fluctuated only a few degrees about 28~ 
the victim was shaded, and in which the density of larvae was 
relatively low (no shortage of food or elevated maggot mass tem- 
perature). Often, however, the conditions under which the subject 
larva grew are different from those under which the experimental 
larvae were grown. A large number of factors (for example, the 
fly species, whether the fly is in a state of diapause (developmental 
arrest), abiotic environmental conditions) might influence maggot 
growth rate. In the absence of accurate observation and measure- 
ment of these conditions, one must use some qualitative judgment 
and what limited knowledge of conditions exists in order to assess 
whether the subject larva might have grown faster or slower than 
the experimental larvae. Investigators should develop their own 
baseline data for conditions relevant to any particular location, 
insect species and environment likely to be encountered in the 
field, and we hope that the type of analysis performed in this study 
will be applied to such experiments. 

Most studies of maggot development report only one measure 
of  size (for example, length after larvae are heated, wet weight or 
dry weight). Obviously one must measure a larva of unknown age 
in the same manner as in the reference study to be used. Wells 
and Kurahashi [25] discuss the relative merits of  developing growth 
curves based on length compared to dry weight. 

Bias in selecting the subject larva can occur if, for example, the 
larva is selected because of its size. If an investigator deliberately 
chooses the largest available larva, then the bounds on age com- 
puted for that larva will be too high. That is not to say that 
investigators should deliberately ignore larvae that appear to be 
large or small. It is to point out a limitation of the confidence 
intervals that we have described here because they are based on the 
assumption that the larva is randomly selected from a population of 
larvae of a given age. 

Many scientists may be uncomfortable with a statistical proce- 
dure not found in textbooks or software packages. Statistical 
advice, however, is provided by most academic institutions, and 
we encourage forensic scientists to form such collaborations. 

The procedure we have described, in which a model relating a 
response (weight) to a factor (age) is fit to experimental data, then 
used to infer the factor value of a subject based on its measured 
response, is called calibration or inverse prediction in the statistical 
literature. It has been applied in a great variety of settings. See 
[26] for a nice description of its application to determine fetal age 
from ultrasound measurements. Details of the model fit to the 
experimental data may differ greatly with the application, but the 
concepts and technical basis are the same. 

Although we have used fly development data in this paper, the 
forensic uses of these methods extend far beyond entomology. 
Inferences based on relations such as we have examined here are 
common: estimation of a victim's age based on skeletal measure- 
ments [27] and estimation of the post-mortem interval based on 
body temperature [28] or on concentrations of chemicals leached 
from the victim into the soil [29], for example. In each such setting, 
use of confidence intervals on the target quantity, obtained as we 
have described here, provides both an estimate of  the quantity and, 
by the length of  the interval, an assessment of  the precision of 
the estimate. 
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